Peptide binding by protein disulfide isomerase, a resident protein of the endoplasmic reticulum lumen.

نویسندگان

  • R Noiva
  • H Kimura
  • J Roos
  • W J Lennarz
چکیده

Previously we had demonstrated by photoaffinity labeling that a 57-kDa protein of the endoplasmic reticulum can bind and become covalently linked to glycosylatable photoreactive peptides containing the sequence-Asn-Xaa-Ser/Thr-. Subsequently, it was found that this protein, called glycosylation site-binding protein, was a multifunctional protein, i.e. it was identical to protein disulfide isomerase (PDI), the beta-subunit of prolyl hydroxylase and thyroid hormone-binding protein. In this study, the peptide specificity for binding to this 57-kDa protein, hereafter called PDI, has been investigated in more detail using photoaffinity probes. The results reveal that although N-glycosylation by oligosaccharyl transferase in the endoplasmic reticulum has an absolute requirement for an hydroxyamino acid in the third amino acid residue of the glycosylation site sequence, no such specificity is observed in the binding of such peptides to PDI. In addition to the lack of specificity for an hydroxyamino acid in the third residue position, no specificity was observed for the asparagine residue in the first position. Thus, binding is not restricted to peptides containing N-glycosylation sites. We have investigated the discrepancy between this apparent lack of sequence specificity and earlier results indicating that binding of peptides to PDI was specific for N-glycosylation site sequences. We now demonstrate that PDI in the lumen of microsomes is more efficiently labeled by peptides containing photoreactive-Asn-Xaa-Ser/Thr- sequences than by nonacceptor site sequences because the former become glycosylated. This increased labeling does not occur because the glycosylated form of the probes are preferentially recognized by PDI. Rather, it appears that increased polarity of the affinity probe after attachment of the oligosaccharide chain prevents its exit from the sealed microsomes, in effect concentrating it within the lumen of the microsome. These results, coupled with other studies on the multifunctional nature of PDI, suggest that the observed peptide binding may be a manifestation of the ability of PDI to recognize the backbone of polypeptides in the lumen of the endoplasmic reticulum.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protein folding in the endoplasmic reticulum.

In this article, we will cover the folding of proteins in the lumen of the endoplasmic reticulum (ER), including the role of three types of covalent modifications: signal peptide removal, N-linked glycosylation, and disulfide bond formation, as well as the function and importance of resident ER folding factors. These folding factors consist of classical chaperones and their cochaperones, the ca...

متن کامل

Signal transduction: Splicing together the unfolded-protein response

Cells respond to the accumulation of unfolded proteins in the endoplasmic reticulum (ER) by increasing the production of ER-resident chaperones, such as BiP and protein disulfide isomerase (PDI), that expedite protein folding and assembly in the ER lumen. In organisms as diverse as yeast and humans, this is accomplished by increasing the transcription of the genes that encode these chaperones. ...

متن کامل

Protein disulfide-isomerase in rat exocrine pancreatic cells is exported from the endoplasmic reticulum despite possessing the retention signal.

Recently we found by immunogold electron microscopy that protein disulfide-isomerase (PDI), a major resident protein in the lumen of the endoplasmic reticulum (ER) of many cells, is exceptionally localized in rat exocrine pancreatic cells not only in the ER but also in plasma membranes and other organelles along secretory pathway (Akagi, S., Yamamoto, A., Yoshimori, T., Masaki, R., Ogawa, R., a...

متن کامل

The ricinosomes of senescing plant tissue bud from the endoplasmic reticulum.

The ricinosome (synonym, precursor protease vesicle) is a novel organelle, found so far exclusively in plant cells. Electron microscopic studies suggest that it buds off from the endoplasmic reticulum in senescing tissues. Biochemical support for this unusual origin now comes from the composition of the purified organelle, which contains large amounts of a 45-kDa cysteine endoprotease precursor...

متن کامل

Calcium binding chaperones of the endoplasmic reticulum.

The endoplasmic reticulum is a major Ca(2+) store of the cell that impacts many cellular processes within the cell. The endoplasmic reticulum has roles in lipid and sterol synthesis, protein folding, post-translational modification and secretion and these functions are affected by intraluminal endoplasmic reticulum Ca(2+). In the endoplasmic reticulum there are several Ca(2+) buffering chaperon...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 266 29  شماره 

صفحات  -

تاریخ انتشار 1991